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ORBITALLY QUANTIZED VORTEX STATES OF LASER
RADIATION AND PHOTONIC SUPERFLUIDITY

V. I. Kruglov UDC 535.36

The existence of the phenomenon of photonic superfluidity in certain laser systems is demonstrated as is the
identity of orbitally quantized excitations of the photonic Bose condensate (o vortex lines in superfluid He
and Abrikosov's vortex lines in type-11 superconductors.

The problem of propagation of spiral laser radiation in various nonlincar media has been studied in detail
in recent years [1-7]. The main difference of spiral light beams from conventional laser radiation is that they have
a tubular intensity distribution, and the electric ficld rotates about the axis of propagation of the radiation. As |
have shown carlier, this is asscsiated with a new characteristic of spiral radiation, the topological charge m = 0,
+1, £2, ... . The case of m = 0 corresponds to a conventional laser beam. The angular rotation velocity 2 of the
electromagnetic ficld is determined by the frequency of the light w and the topological charge m: Q = w/m, wherc
m# 0.

Another important fcaturc of spiral beams propagating in the scif-waveguide regime is the fact that
diffraction divergence is completely absent. This unusual, at first glance, property is connected with the optical
nonlinearity of the medium. For certain types of nonlinear media, when the power integral of the spiral beam
exceeds the threshold value, nonlinear interaction with the medium can lead to compression of the light beam and
total compensation of diffraction phenomena. Spiral optical beams are in many ways similar to such macroscopic
coherent phenomena as superfluidity and superconductivity, which has been stated several times in our previous
works [4-6 ]. Investigation of the problem shows that spiral laser radiation propagating in a nonlinear medium is a
rotationally quantized excitation of the superfluid photonic Bose condensate.

On the other hand, it is known that vortex lines excited in superfluid He Il and Abrikosov’s vortex threads
in type II superconductors are orbitally quantized excitations of the Bose condensate. Thus, we come to the
conclusion that the three above-mentioned phenomena are physically identical. It should be noted, however, that
identity of their physical mechanism does not exclude certain distinctive features inherent in each of them. In
particular, the Bose particles in all three cases are different. In the case of superfluidity, the Bose condensate
consists of Cooper pairs.

Another important distinctive feature of the photonic Bose condensate is that the particles have zero mass,
and, therefore, they all move with a velocity close to the speed of light in vacuum. In what follows, we will show
that the topological charge m of a spiral beam [! ] is actually a quantum number that characterizes the rotational
state of individual photons of the spiral radiation field.

Quantized Field of Laser Radiation and the Theory of Superfluidity. We present a theory of propagation

of spiral laser radiation in a nonlinear medium in quantum-hyvdrodynamic form. Let us write thc strength of the
electric field E in the following form:

E=E,+E_, E, = > e Fexp (- wl), ()
0

. l
E_.=E,., ¢ =—(n +in,), ey=ny, 2
+ a
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where e are circular polarization vectors. When free charges are absent the wave equation for the transverse electric
field in a nonlinear medium takes the form

2
2 1 9 2 3
VE+—_2 _3(5(|F!)E+)=Ov )
c ot
where
2 - 2s 2 2
e(IFID) = 2 e |FI7, |F| =§ LFl” 4
5=0

and it should be noted that the condition VE, =0 is approximately satisfied. Let us introduce the following functions
W

. Satiw
W=, g = 2

I

L A==x1, (5)
Va £

which, as will be shown in what follows, can be treated as wave functions of the collective photonic state. Indeed,
it follows from (5) that the energy density W of the electromagnetic field of the radiation has the form

A= *1

Based on Eq. (3), in an approximation of slowly varying amplitudes Fj, we arrive at the Schrodinger-type equation

2
3 . A
B W= H (N Y H(N)=—MV2+U(N), M
i
U(N)z——z?w(;e(aN), N=1_§jl~l, (8)

where the effective mass Mg is introduced using the relationship 7w = Moc(z), co = ¢/Veg. In accordance with
quantum mechanics, we determine the flux density J; and the velocity vy:

i . . -1 A
Y= g (W,V¥, — W, VW), v, =N ], = My ve,, ®

where W, = VN; exp (i0,). Using Eq. (9) we can represent the wave Eg. (7) in hydrodynamic form:

%N}»‘*‘V(NAV)‘):O, (10)
d 12
$VA+V(;4)\+5\Q>=O, (1D
1 # 2
ur=—(Ug(N) + UN)), Ug (W) =~———=V VN, (12)
M, M,V N,

It should be noted that Eq. (11) can also be written in a form that coincides with the hydrodynamic equation of
motion of an ideal fluid

ad 1
0
Integration of Eq. (13) leads to an equation for the velocity potential ©;:
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d 1 2
R @+ 5 My + Ug (Ny) + U(N) = 0. (14
It is interesting to note that Egs. (10)-(12) coincide with the Landau equations for the superfluid component of He
Il in the theory of superfiuidity [8 |. Equations (10)-(14) also coincide with the hydrodynamic form of the cquations
of the theory of type-1I superconductors {9, 10]. In addition, the theorem of conservation of velocity circulation
follows from (13):

D=0, D=2

Y + V,‘_V’i, rl = ¢ V/l | R (l‘s)

G

where ¢; is an arbitrary closed 1-connccted fluid contour. Calculation of the circulation I'; for a spiral laser beam
[1-7] leads to the following result:
Lth

r, = gD v;dl=-——m., m,=0,*1, =2 ... (10)
A ’ kS \{” ’
i

where we used the definition of velocity (9). Here ¢ is a positively oriented 1-connected closed contour containing
the z axis. Relation (16) coincides exactlv with the guantization rule for velocity circulation in the theory of
superfluidity {8, 9]. It should be noted that quantization condition (16) also holds in the theory of type-ll
superconductors, and v; in this case has the meaning of the canonical velocity of Cooper pairs {8, 9. It can be
easily seen that relation (16) is also equivalent to the Bohr-Sommerfeld quantization equation:

(17

N \

6 pidq; = Lrhim, m; =0, 1, =2,

)

where p; = Myv; and qu(dq; = dl, A = £1) are canonical momenta and coordinates. It follows particularly from Eq.
(1'7) that the quantity #im, is the projection of the orbital moment of photons of the spiral laser beam onto the
quantization axis z. Thus, the topological charge m, of the spiral laser beam coincides with the orbital quantum
number of photons of the vortex electromagnetic field. According to (7), (8), and (16) the tangential projection of
the velocity vy and the angular velocity €, of the spiral laser beam are as follows:

ﬁm}‘

(V).)w - A{OF ’ i (18)

w
= Tn—; ,
where m; # 0. It should be noted that the formula for (v;),, coincides exactly with the corresponding results of the
theory of superfluidity and superconductivity. Taking into account Eq. (18) and results of {6], we calculate the
rotational energy Eg of the spiral beam

2
d ¢ 2
= Ep=——5 > Iml& (1. I=[[1F]| dxdy. (19)

dz 8aw” i= =1

Similarly, we find an expression for the projection of the angular moment L; onto the z axis of the spiral
laser beam:

Li=g— 2 mi. (20)

W A=+

Sl=

We consider as an example the case when the intensity distribution of the laser beam does not depend on z. As
has been shown in (2-6], under certain conditions this regime of propagation of spiral laser radiation is actually
realized. Let the spiral beam have the spirality 4 = +1. Then the solution of Eq. (7) has the form

Wo(re )=/, (rexp li (mp + kz — w1 + dy) . Q2n
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Substituting (21) into (7) and taking into account that W_, = 0 we arrive at an equation for the real-valued
amplitude f,,,(r {1}

i d ( d mt W
, —[r_[’n) — T+ 5 (e @) = ) [ = 0, (22)
dr r r ¢
where
€ (af,zn) = gq + cza/%n + e4a2/’,: + ... m=x1,%2 ... (23)

If we retain only the first two terms in expansion (23), Eq. (23) will coincide with the Ginzburg-Pitacvskii equation
for quantized vortex lincs in the theory of superfluidity of a ncarly ideal Bose condensate at zero temperature [8 ).
It should be noted that Eq. (22) also describes Abrikosov's quantized vortex threads in the vicinity of the singularity
line {10].

Orbital Spiral States of the Rotationally Excited Photonic Bose Condensate. The above results demonstrate
that the theory of propagation of spiral laser beams in a nonlincar medium is formally identical to the theory of
superfluidity of He Il and the theory of type-11 superconductors. This suggests that a spiral laser bcam is an
orbitally quantized vortex excitation of the Bose condensate. In order to prove this statement, we should first define
the photonic states of the radiation field corresponding to orbital excitation of vacuum {11, 12 ]. Single-photon states
of the radiation ficld are described by wave Eq. (3) at e = ¢¢g = const and have the form

EY = % Fyexp (= wr), VE, =0, (24)

where N is the complete set of photon quantum numbers. From (3) and (24) we have an equation for the amplitude
FNI

VFy + KFy=0, VF,=0, (25)

where k = Vegw/c. It should be noted that the set of photon quantum states is determined by a system of linear
eigenvalue equations:

SZFNT = AFNT ’ PZFN = —ﬁ"CFN 3 LZFNT - ﬁmFNT . (26)

Here S, is the photon polarization operator, P, and L, are the operators of theprojections of the photon momentum
and orbital moment onto the z axis:

0 —-:i0 3
S.= 1|1 0 0}, Pz:-—lﬁ—w,
0 0 O 27)
U e
L,=—ih (x 3y "Ox) = — 1k 3p

Here Fyr is the transverse component of the vector Fy Fa = Py + Fyyz, Fypr n =0, where nois a unit vector
directed along the z axis. [t follows from (26) that the complete sct of quantum numbers of the introduced photonic
states is N = (X, w, x, m), where 4 is the photon spirality, #w is the photon energy, #x is the projection of the
momentum onto the z axis, and #m is the projection of the orbital moment onto the z axis. [t can be shown [L1,
12] that the solution of Egs. (25) and (26) has the form:

Fy(r)= AN?_? m exp i (kn (D, o)1+ (m + Dp) 1 dp . (28)
0V (2n)

Here we used the following parametrization of the circular-polarization vectors e; (0, ¢):
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cos ¥

exp (— ip) (29)
e @ )= dcosd |
V1 +cos?d _ sin geap

and it should be noted that
n (3, ¢) = sin? cos pn; + sin ¥ + sin pn, + cos Iny.

Integration in (28) leads to an expression for the positive-definite part of the electric field of orbital spiral photonic
states [11, 12]:

k™1, (gr)
Akk l./m (¢r) . (30)

{mp+xz—wl)

Al
E, (rnp, 2,0 = Cye
_.‘ ;
— Agk Rl J e, Lyr)

Here Cy = coust, ~ and ¢ arc the longitudinal and transverse wave numbers:
. 2 2 2 )
K=kcosD, g=ksin?, kK =x"4+¢, k=—

Jm{gr) are Besssel functions of the first kind, 0 < 9 < x is the angle of the spherical system of coordinates, m =
0, =1, =2, ... is the orbital quantum number of the photon.
The wave function of the photon (30) also satisfies the system of cigenvalue equations:
N N N N
m LY —nweY | pEY = mEY

at (3

MEY =n(a+mE}, KE! =21},

where
0 —-:i O
M,=L,+%S,, K, =1{i 0 0
0 0 =1

The vortex state of the laser radiation in a nonlinear medium can be represented in the form of a wave package of
photonic states (30) with fixed spirality A and orbital quantum number m. Taking into account (30}, and the fact
that sin § << 1, we can neglect the longitudinal component of the field, which leads to the following expression:

e'v N —_ r) ® l .
E, =5 T Gy (P 0 (rp VT = i7) exp (ipz) dpde . (32)
0 0

Here 4 = cos 9, and G, (p, 4, 0 is a function determined by the mean value of the annihilation operator a;pum of

an orbital spiral photon of the spiral beam. Expanding exp (iupz) into a Bessel series, we can write wave package
(32) for a complex amplitude F; as follows:

. + o ] .
Fy(r,p,z, 1) = e 2 f Ffm (r.p. ) J, (p2) dp, (33)
n=-o ()
nn/Z
Fin(rop 8y = " [ Gy (p,cos 9, 1) J,, (rp sin 9) exp (— in) sin 9d? . 34)
0

Inasmuch as photons of the spiral beam have vanishing energy dispersion, the complex-valued amplitude
Fj can be written as follows:
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o :
Fi(rng.z,)=¢"t | Gim Ws ) Iy (rk V' U = p%) exp (iukz) du . (3%)
0

Expansion (33) in this case is transformed to a Neumann series:

Fy(rip, 2,0 = % C) (r @, 1) Iy (kz) + é}l Chm (1 oy O 1, (K2) (36)
where
Clm (Fy Py ) = xp (imip) (fyy (r 0+ (= 1) [0 (7 1)), (37)
, a2 ,
Ui (ro 0y =10 [ g, (cos 0, 0) 1, (rk sin 0) exp (= 1nd) sin DdD . (38)
0

[t is well known that only periodic functions can be expanded into Neumann series, and, thercfore, the function
F; is periodic with respect to z. This fact is in complete agreement with the theory of self-waveguide propagation
of spiral laser beams [2-6]. In addition, here we found that the orbital quantum anumber m coincides with the
topological charge of the spiral beam introduced in (1, 2.

Orbitally Quantized States of the Photonic Condensate in an Active Laser Medium. We consider rotutional
vortex states of the clectromagnetic field in an active laser medium on the basis of the Maxwell-Bloch system of

laser equations. In an approximation of slowly varying amplitudes the system can be written as follows:
S EeE-a(l+B8)E+F, L F=—y(l -y F+yQF
3t = ( o UV v { 0- 7 y
39
, 5 . (39)
= 0=-B(Q~- Q-5 EF +FE).

Here, for convenience, all the variables and constants are represented in dimensionless form. Complex-valued
functions E and F describe the electric field and polarization of the active laser medium, Q is the population
inversion, y and § are the transverse and logitudinal relaxation times of the medium, dp is the detuning from the
atomic-transition frequency, and A is the Laplace operator in polar coordinates:

5
-2 3"
+r —Z‘E.

op

_li
ar

r~E
ar

AE =r

Pumping and losses of radiation in the laser are determined by the parameters Qg and a. In what follows, we
consider a definite type of laser with boundary and initial conditions of the following form:

oE
ar
-

=0, Efj.g=Eg(rip). Flig=Folrne), Qlimo=Qp- (40)
=R
Here Eg(r, ¢) and Fy(r, ¢) arc determined by fluctuation processes in the laser, and R is the boundary value of
the dimensionless variable r.

The simplest nontrivial solution of system (39) and (40) at Qg = const is expressed by a stationary uniform
distribution:

172
a1
E:(QO 1—5(2)) exp (idy) , %9>1+aé, 5

a

where pg = const. Single-vortex solutions at arbitrary values of the topological charge m = =1, 2, *3, ... are as
follows:
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E=E,exp(=iQuf), F=Fpexp(= Q) %Q =0. (42)

Substituting (42) into (39), we arrive at a nonlinear equation for eigenfunctions E,, and eigenfrequencies Q,,:

(I = 3p) QoEnm (43)
L4685 + |Eyl’

Q.E =-AE, —a(i—3dyE, +
where

Qm ] 44
ém = é() + Ty E, (r.p) = [, (r)exp i (mp + Dy (M (44

In accordance with (40), the boundary conditions for f,,(r) and &, () arc as follows:
" L o , .
= = L = 45
(__dr"" (r,)Jr:R 0, (t/f b, (r)) o 0. (45}

Introduction of orbital spiral photonic states (30) makes it possible to represent the amplitude E,,(r, ) in the form
of a wave package:

a
E, (r.¢) =exp (imep) | g ), ur) du. (40)
0

Let us consider the case when the wave package (46) has low dispersion with respect to the transverse wave
numbers u ~ 4 sin 9; then the amplitude f,(r) can be presentied as follows:

- ,
f (1) = Cpp I (/Im'k“), m=+1,+2,%3, ., (47)
where u,, is the first positive root of the equation dJ,,(r)/dr = 0. The constant C,, is determined by substituting

(47) into (43) and passing to the limit r = R. Thus, using (42), (44), (45), and (47) we find the approximate
solution

E (r’ P t) = ijm (fum é) £xp [l (m‘/’ - th + (bm (r)) ], (48)
172
C,=J W) | —a———o-1-6 L8 =0, + 2.
m m m a+(1)m(R) m m 0 y

The phase ®,,(r) can be depermined from Eq. (43) with allowance for (45), (47), and (49). To obtain an equation
for eigenfrequencies Q,;, onc can simply substitute (17) into (43) and pass to the limit r -» O:

b

Q02 : Ko
O—HZ * :'/ar'l =(a+vy) é() + 5 Qm =V (ém - 60) . 60
L +3), R

9
F4

Comparison of the approximate analytical solution (48) at ®,,(r) = const with the numerical solution of the system
(39) and (40) in the stationary regime shows that in the vicinity of resonance d,, = 0 at m = *1, £2 *3 the
solutions coincide with each other up to the accuracy of the numerical experiment [12]. Thus, in numerical
calculations {12 ] the analytical (48) and (49) and numerical solutions coincided to the third decimal place, and
the discrepancy was less than 0.19%. This means that in the vicinity of points é,, = 0 the vortex state of the laser
radiation, according to (48) and (49), is actually a condenstate of orbital spiral photons (30} in the active laser
medium. It should be noted that vortex states of the radiation field were considered in {13-151].
Formulas (41) and (48) can also be expressed in terms of ordinary dimensional variables:
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(ShH

m
+
Il

Q 1/2
eAEo (70 -1~ (5(2)) €Xp [l (kol had wol + (bo) ] B

E,

1

e, E,C,J (/"m _rr;) exp li (mp + Kz —wt + Py |, 2

where r, z, and ¢ arc dimensional quantities, Eg is a parameter of the laser system with the dimensionality of the
electric-field strength, rg is the radius of the active medium of the laser, &g and « arc wave numbers, dg = const,
and 6,, = 0. Formulas (51) and (52) obviously cxpress only the waves propagating in the positive direction of the
z axis of the active laser medium. In the case of a conventional lascr, similar waves also propagate in the opposite
direction.

Solution (51) holds when R < Ry, where Ry is the bifurcation point determined from (30) at Q,,, = 0. When
R > Ry, a transition from distribution (5D to (52) takes place, and it should be noted that m = = 1. With passage
through the bifurcation point Ry, a frequency shift Awg can be observed:

w=wy + Awy, AUJR=S3—(;H. (53)

here fg is the characteristic time parameter of the laser, which is used when the time in the system of equations
(39) is made dimenstonless: t/15 - 1. [t follows from (50) and (53) that at the points of vortex resonance 6, = 0,
the frequency shift Awg is described by the expression:

_ 1%l (54)

It should be noted that the ground state of the field in the laser (51) is of fundamental significance from
the viewpoint of the theory being developed here. Indeed, this is a superfluid photonic state of the Bose condensate
that is created in an active laser medium when R < R| and Qp/a >1 + 6%. This is a ground superfluid state of a
multiphoton quantum system with all quanta having equal values of the wave vector k and spirality 4. These sates,
as is known, are described by plane waves with rather definite normalization of the resulting wave (§1).

On the other hand, the vortex quantum state of the radiation field (52) is completely identical, from the
physical point of view, to orbitally quantized vortex lines in the theories of superfluidity and type-II
superconductivity [8-10]. Note that the orbitally quantized radiation (52) corresponds to the wave package (32)
with zero dispersion of the logitudinal and transverse wave numbers x = & cos 3, g =k sin 9 of orbital spiral photonic
states (30). Indeed, it follows from a comparison of expressions (32) and (32) that

, . -2 2
G (Poat, 1) =y, 8 (p — k)OS ((rgk) "y — 1 + 1) (35

This means that all orbital spiral photons of the vortex state (52) are in the same quntum state N = (4, w, &, m).

Therefore, we can state that the superfluid Bose condensate (51) can be created under certain conditions
in laser systems considered in the present article. Orbitally quantized excitations of the superfluid photonic
condensate (51) at resonance points &,; = 0 are desribed with high accuracy by expression (51 and, as has been
found, are identical to vortex lines excited in He Il and type-11 superconductors. Thus, we come to the existence
of type-111 superfluidity, namely, photonic superfluidity. In this case the self-waveguide propagation of the spiral
radiation in nonlinear media and the vortex states of the electromagnetic field in the active laser medium represent
orbitally quantized excitations of the superfluid Bose condensate with a definite orbital quantum number m =
+1, +2, ...

Index Theorem. It has been demonstrated in numerical experiments [12] that, along with vortex solutions
with various topological charges, N-vortex solutiofis of system (39) and (40) cxist. The N-vortex stationary
solutions of Egs. (39) and (40) can be presented in the following form [16]:
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E(r,p,0) = S: i Chm (1) 3", (56)

n=0m=0

where z = r exp (), = exp (—ip). Since the field strength vanishes at the center of each of the vortices, the
N-vortex solution has the form [16]:

N
E(rip )= Egoxp (K (rop. ) ] (2= 20" (& = )", (57)
s=1
where K(r, ¢, 1) is a totally defined function that has an cxpansion over the variables z and Z similar 10 (56). In
addition, v, = const and u; = const are nonnegative integers in the stationary regime, and v, + u; > 0.
It is important to note that function (56) and (57) is not analytical with respect to z, since the Cauchy-
Rieman condition is not satisficd. Let us prove that the index of the function £(r, ¢, » cquals the sum of topological
charges of the vortices enclosed by the contour

db = 2 n . (58)

s=1

F"!__

Ind E(r. ¢, 11, =

Here & = arg E(r, p, 1), my = vy — 15, ¢ is an arbitrary positively directed closed |-connected contour belonging
totheregionr < R, z; (s =1, 2, ..., n; n £ N) are zeros of the function E(r, v, 1) belonging to the region cenclosed
by contour ¢. In order to prove the theorem we will use a formula that follows from (§7):

INV
E_IVEz(e_rzze)Z +le - ) D

-
s=1 z —z s=1 2 — =

“s 5

+ VK. (59)

Here e, and e, are unit basis vectors, V = e,d/dx + e,d/dy. After integration of expression (59) along contour C
we obtain:

-1 Y dz N dz L 0
6 EVEds= Y v, + Y oug b =i Y (v py). (60)
c s=1

s=1 €z~ 2z s=1 € zZ—= 2z
Here we took into account that

$ VKds = $ dk =0, (61)

o

since K(r, ¢, 1) is single-valued within the region r < R.
On the other hand, assuming that £ = | El cxp (iD), we find that

1 1 1 ]
= V = v - - 62)
7 9CS Eds = 5— gf In |E] ds + 5~ qs Vabds = 5~ gf do (
since the function In LE| is single-valued, and, consequently,

$ Vin [E] ds=0. (63)
(o

With allowance for (62), expression (60) can be presented in the form:

ﬁ dd = g (vy — tg) = 2 mg . (64)

s=1
Thus, the theorem is proved.

Let ¢s be an arbitrarily oriented 1-connected closed contour enclosing only the s-th zero of the function
E(r, ¢, 0. In this case, according to (64), we find that
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1
=57 ;f (65)

Substituting (65) into (64), we obtain

c s=1 ¢

$db =S § db. (66)

We note that cxpressions (58) and (66) completely agree with results of numerical experiments for stationary
N-vortex regimes (12].

Finally, we prescnt the proof of the conservation law for circulation (15):

=6 (D) + $ v, (DAY= —¢ Viydl + § vidv, = § d ( v —,112) =0. (67
c; /

€ < < G

Here ¢; is an arbitrary l-connected closed fluid contour. In deriving expression (67) we used Eg. (13) and the
single-valuedness of the function l/2vf — 1, at an arbitrary point of space.

Conclusion. The cxistence of homogencous solution (51) of system of Eqs. (39) and (40 is of fundamental
importance for the theory presented and is also substantiated by numerical experiments [12]. This regime takes
place only when R < Ry, where R, is the first bifurcation point. When R > Ry, transition from regime (51) to
vortex regime (52) takes place, and it should be noted that m = %1. The bifircation point R, is found from (50)
if one sets Q,, = 0:

| -2
Qo

Ry =py | =5 — adg
L+ o

(68)

The results of numerical calculations (12, 16] agree with the analytical value of (68) for the first bifurcation with
an error of less than 1.

The value of the parameter R corresponding to vortex resonance can also be found from (50) at §,, = O:
-1/2
R=ppl@+y) 18] 17" Qu=7 3 (69)
and is reproduced with high accuracy in numerical experiments {12, 16]. In addition, it can be shown that the

power of thc rotating laser radiation ficld at the point of the vortex resonance (69) has a maximum and is
determined by the formula:

2w R L
2 T (M m)(Q ) (70)
P = d E dr = ——"—t 1.
[ode TED rdr = 5]

This power, in particular, is higher than the power in the homogenecous regime (51).

As has been shown, the homogeneous stationary state of the laser radiation field (51) comprises the
photonic Bose condensate, which can be considered a superfluid quantum state of the radiation field with the lowest
energy. With passage through bifurcation point Ry, the superfiuid state of the multiparticle quantum system
becomes unstable, and an orbitally quantized state of the radiation field is cxcited.

At the resonance point (69), dispersion of the wave package that describes the vortex field vanishes. Due
to this fact, the orbitally quantized state of the radiation field is described with high accuracy by expression (52)
in the point of vortex resonance J,, = 0. It follows from the theory presented that vortex state (52) is physically
identical to quantized vortex lines in superfluid He 11 and Abrikosov’s lines in type-1l superconductors. Indeed,
the resonance vortices described by expression (52) are multiphoton states of the radiation field with all quanta in
orbital spiral state (30). Thus, vortex state (52) is the Bose condensate of orbital spiral photons (30).
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Numerical solution of the system of Egs. (39) and (40) has shown that for rather high values of R, when
a considerable number of vortices is created, a stationary regime that comprises a vortex lattice with a square cell
can be established in the active laser medium. In such a multivortex lattice, neighboring vortices have opposite
topological charges m = +1. This vortex photonic lattice is in many ways similar in its properties to the vortex
lattice formed by Cooper pairs in type-I1 superconductors [10].

The fact that the lattice is square in the former case and triangular in the latter case is explained by the
difference in interactions. Thus, the existence of a vortex lattice in an active laser medium can be considered as
an additional substantiation of photonic supcrfluidity, which [ have called type-I1I superfluidity {11, 12].

The author is grateful to V. M. Volkov and 1. E. Tralle for fruitful discussions of the results.

NOTATION

E, strength of the clectric field; N;, photon density; @;, velocity potential; v;, local velocity of the radiation
field; x4, chemical potential of photons; I, circulation of the velocity; m;, topological charge; €, angular velocity
of the radiation ficld; E, complex-valued strength of the electric field; £, complex-valued polarization of the active
laser medium; a. radiation losses in the laser; y, transverse relaxation ume; 8, longitudinal relaxation time; dg,
detuning from the frequency of the guantum transition; , inversion of laser levels; (Jg, pumping paramcier of the
laser energy; &, transverse wave number of photons; ¢, longitudinal wave number of photons; w, frequency of light;
P, power of laser radiation; &, phase of the electromagnetic field.
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